欧美日韩四区_日韩精品在线一区二区_狠狠亚洲婷婷综合色香五月排名_久操免费在线_日本乱偷人妻中文字幕在线_久久a热6_日韩干b_偷看少妇自慰xxxx_97色偷偷色噜噜狠狠爱网站_色婷婷视频在线观看_中文字幕亚洲综合小综合在线_一级免费看片_人人看超碰_日本久久爱_国产大片一区二区_大象一区二区三区_欧美日韩无砖专区一中文字_亚洲国产午夜_国产在线精品无码av不卡顿_亚洲日韩欧洲乱码av夜夜摸

Leaching and recovery of zinc from leaching residue of zinc calcine based on membrane filter press s

Category.prescription 992

1 Introduction

Zinc sulfide ores are the main source of zmc metal in the world, in which zinc generally exists in forms of sphalerite and marmatite. Currently,more than 80 per cent of the zinc is produced by conventional zinc hydrometallurgical methods, including roasting, leaching and electrowinning processes [1, 2]. % of the zinc is produced by conventional zinc hydrometallurgical methods, including roasting, leaching and electrowinning processes [1, 2]. During the roasting process, ZnS is converted to ZnO, but a significant fraction of ZnO reacts with the iron impurities to form zinc ferrite [3-51]. Zinc ferrite is insoluble in mild acidic conditions, strong Hs. A considerable amount of leaching residue will be produced in the subsequent leaching process [f6, 7]. In addition, the leaching reaction rate decreases over time due to the decreasing acid concentration during the tradifional leaching process in the stirred tank. Consequently, incomplete leaching will OCCur, thereby further increasing the generation of zinc leaching residue (ZLR), leading to a significant waste of resources and a high environmental impact. Consequently, incomplete leaching will OCCur, thereby further increasing the generation of zinc leaching residue (ZLR), leading to a significant waste of resources and a high environmental risk [8, 9]. The high demand for zinc has attracted the interest of industry to utilise the ZLR as a valuable secondary source [1].Hydrometallurgical processes are dely applied to recycle zinc from ZLR due to their significant advantages of lower capital and operating costs, as well as being less harmful to the environment [1, 1]. environment [1, 2]. Currently, the most common hydrometallurgical process is to recover zinc from ZLR in a bath of hot concentrated sulfuric acid [10]. high extraction rate of zinc can be obtained using this process, but incomplete leaching still occurs due to the leaching in the stirred tank.Moreover, the hot concentrated acid leaching process involves a high extraction rate of zinc in a bath of hot concentrated sulfuric acid. Moreover, the hot concentrated acid leaching process involves a long reaction time f4-6¨and consumes an enormous amount of energy and sulfuric acid More importantly, in most electrolytic zinc plants, the ZLRs containing water-soluble zinc with a content of less than 5 per cent of the ZLRs were used to produce the ZLRs in the stirred tank. More importantly,in most electrolytic zinc plants, the ZLRs containing water-soluble zinc with a content of less than 5% are directly discharged or heaped, causing a portion of the zinc losses. The water-soluble zinc can cause soil contamination, water pollution and several other serious environmental pollution through the leachate by rainfall [8, 9]. Therefore, finding a cost effective and environment friendly process to recover zinc from ZLR remains a major challenge. The membrane filter press (MFP), which is a common machine on solid. The membrane filter press (MFP), which is a common machine on solid-liquid separation, has advantages of low cost, high solid content and outstanding efficiency that has been widely used in various industries. years, the washing functionof MFP has also been attracting attention for use in the titanium dioxide, sugar,pigment and electrolytic manganese metal In recent years, the washing functionof MFP has also been attracting attention for use in the titanium dioxide, sugar, pigment and electrolytic manganese metal industries[1b14]. LIU et al[14] recovered 50%of water-soluble manganese from an electrolytic manganese residue fEMR) via a MFP using water. -based water washing technology could be industrially applied because it solves the problem of ''water swelling". swelling", which commonly occurs in previous water washing technologies [1 4, 1 5]. On the basis of the previous work of LIU et al [1 4], we attempted to wash the EMR via a MFP using anolyte. In 2009, the MFP-based technology on the leaching and recovery of manganese from EMR via a combination of anolyte washing with water was developed. combination of anolyte washing with water washing was realized and resulted in a patent application being submitted (No. CN1 024700A) 『1 61.Note that However, the possibility of using this technology in the hydrometallurgical zinc production process has not yet been demonstrated. However, the possibility of using this technology in the hydrometallurgical zinc process has never been investigated previously. The thickening, pulping, second leaching, washing, filtering and pressing would be integrated and realised using a single MFR In addition, the leaching of zinc from ZLR In addition, the leaching of zinc from ZLR in the form of spent electrolyte washing would be performed under constant acid concentration via a continuous flow of spent electrolyte. Hencethe feasibility of leaching and recovery of zinc from ZLR would be improved. feasibility of leaching and recovery of zinc from lcaching residue of zinc calcine based on MFP was investigated, combining spent electrolyte washing with flesh water washing. For this work, the uniformity of filter cakes, which is directly related to the leaching result, was examined. Based on this experimental result, the 1eaching and washing on extracting zinc from ZLR were subsequently studied.

1 Introduction

Zinc sulfide ores are the main source of zmc metal in the world, in which zinc generally exists in forms of sphalerite and marmatite. Currently,more than 80 per cent of the zinc is produced by conventional zinc hydrometallurgical methods, including roasting, leaching and electrowinning processes [1, 2]. % of the zinc is produced by conventional zinc hydrometallurgical methods, including roasting, leaching and electrowinning processes [1, 2]. During the roasting process, ZnS is converted to ZnO, but a significant fraction of ZnO reacts with the iron impurities to form zinc ferrite [3-51]. Zinc ferrite is insoluble in mild acidic conditions, strong Hs. A considerable amount of leaching residue will be produced in the subsequent leaching process [f6, 7]. In addition, the leaching reaction rate decreases over time due to the decreasing acid concentration during the tradifional leaching process in the stirred tank. Consequently, incomplete leaching will OCCur, thereby further increasing the generation of zinc leaching residue (ZLR), leading to a significant waste of resources and a high environmental impact. Consequently, incomplete leaching will OCCur, thereby further increasing the generation of zinc leaching residue (ZLR), leading to a significant waste of resources and a high environmental risk [8, 9]. The high demand for zinc has attracted the interest of industry to utilise the ZLR as a valuable secondary source [1].Hydrometallurgical processes are dely applied to recycle zinc from ZLR due to their significant advantages of lower capital and operating costs, as well as being less harmful to the environment [1, 1]. environment [1, 2]. Currently, the most common hydrometallurgical process is to recover zinc from ZLR in a bath of hot concentrated sulfuric acid [10]. high extraction rate of zinc can be obtained using this process, but incomplete leaching still occurs due to the leaching in the stirred tank.Moreover, the hot concentrated acid leaching process involves a high extraction rate of zinc in a bath of hot concentrated sulfuric acid. Moreover, the hot concentrated acid leaching process involves a long reaction time f4-6¨and consumes an enormous amount of energy and sulfuric acid More importantly, in most electrolytic zinc plants, the ZLRs containing water-soluble zinc with a content of less than 5 per cent of the ZLRs were used to produce the ZLRs in the stirred tank. More importantly,in most electrolytic zinc plants, the ZLRs containing water-soluble zinc with a content of less than 5% are directly discharged or heaped, causing a portion of the zinc losses. The water-soluble zinc can cause soil contamination, water pollution and several other serious environmental pollution through the leachate by rainfall [8, 9]. Therefore, finding a cost effective and environment friendly process to recover zinc from ZLR remains a major challenge. The membrane filter press (MFP), which is a common machine on solid. The membrane filter press (MFP), which is a common machine on solid-liquid separation, has advantages of low cost, high solid content and outstanding efficiency that has been widely used in various industries. years, the washing functionof MFP has also been attracting attention for use in the titanium dioxide, sugar,pigment and electrolytic manganese metal In recent years, the washing functionof MFP has also been attracting attention for use in the titanium dioxide, sugar, pigment and electrolytic manganese metal industries[1b14]. LIU et al[14] recovered 50%of water-soluble manganese from an electrolytic manganese residue fEMR) via a MFP using water. -based water washing technology could be industrially applied because it solves the problem of ''water swelling". swelling", which commonly occurs in previous water washing technologies [1 4, 1 5]. On the basis of the previous work of LIU et al [1 4], we attempted to wash the EMR via a MFP using anolyte. In 2009, the MFP-based technology on the leaching and recovery of manganese from EMR via a combination of anolyte washing with water was developed. combination of anolyte washing with water washing was realized and resulted in a patent application being submitted (No. CN1 024700A) 『1 61.Note that However, the possibility of using this technology in the hydrometallurgical zinc production process has not yet been demonstrated. However, the possibility of using this technology in the hydrometallurgical zinc process has never been investigated previously. The thickening, pulping, second leaching, washing, filtering and pressing would be integrated and realised using a single MFR In addition, the leaching of zinc from ZLR In addition, the leaching of zinc from ZLR in the form of spent electrolyte washing would be performed under constant acid concentration via a continuous flow of spent electrolyte. Hencethe feasibility of leaching and recovery of zinc from ZLR would be improved. feasibility of leaching and recovery of zinc from lcaching residue of zinc calcine based on MFP was investigated, combining spent electrolyte washing with flesh water washing. For this work, the uniformity of filter cakes, which is directly related to the leaching result, was examined. Based on this experimental result, the 1eaching and washing on extracting zinc from ZLR were subsequently studied.

Diaphragm filter press Leaching and recovery of zinc from leaching residue of zinc calcine based on membrane filter pres s-plate and frame chamber membrane filter press

2 Experimental 623

2.1 Materials The experimental study was performed using zinc calcine with a composition of 57% zinc, which was purchased from Hunan Province, China. Spent electrolyte containing 1 60 g/L of H2S04 and 50 g/L of Zn" was used in all of the leaching experiments. under all examined conditions. Under all examined conditions, the zinc concentration was determined based on GB/T 14353.3-2010『17〕, and the hydrogen ion concen仃ation fH+, was measured based on GB 6498.2-2001『181. The membrane filter press (KM470) was from Beijing ZSC Solid-Liquid Separating Technology Co. The membrane filter press (KM470) was from Beijing ZSC Solid-Liquid Separation Technology Co.)

2.2 Experimental procedure The diagram of leaching and recovery of zinc from zinc calcine is presented in Fig. 1.111e proper production process is described briefly as follows. described briefly as follows.1 1 leaching in stirred.tank reactor: Spent electrolyte or sulfuric acid was added to the crashed zinc calcine to leach zinc ions from the ores and to obtain the ZnS04-containing zinc. ions from the ores and to obtain the ZnS04-contained slurry. 2. filtration: the ZnS04-contained slurry was pumped into MFP through central feeding hole and filter pressed to obtain the filter. The ZnS04-contained slurry was pumped into MFP through central feeding hole and filter pressed to obtain the filter cakes (i.e., ZLR); next, the filtrate (1eaching liquor) entered the subsequent production process. 3. 1eaching in Ⅳ[FP: Spent electrolyte at the desired temperature was pumped into the MFP and reacted with filter cakes to leach zinc again and simultaneously recover part of ZnS04. 4) water washing: The filter cakes were washed again with flesh water to further recover ZnS04. 5) pressing: Water with a pressure of 1.5 mL was used for the treatment. with a pressureThe eluate obtained from spent electrolyte washing and flesh water washing steps was then pumped into the membrane plates, which was maintained for 20 min to reduce the water content of filter cakes, and the pressed filter cakes were subsequently discharged from the MFP and transported to landfills. The eluate obtained from spent electrolyte washing and flesh water washing steps were collected and returned to spent electrolyte tank and eluate collection tank. The eluate obtained from spent electrolyte washing and flesh water washing steps were collected and returned to spent electrolyte tank and eluate collection tank, respectively.

3 Results and discussion

3.1 Filter cake formation To obtain a high zinc ex仃action rate and recovery rate using an MFP.the most important step is to obtain uniform filter cakes.the particle size of zinc calcine and sedimentation time.which are directly involved with the width of the filter chambers. particle size of zinc calcine and sedimentation time, which are directly involved with the width of the filter chambers, are the most important parameters regarding the uniformity of filter cake. The particle size of zinc calcine and sedimentation time, which are directly involved with the width of the filter chambers, are the most important parameters regarding the uniformity of filter cake. The five-spot test (upper left, bottom left, centre,upper right, bottom right) was used for estimating the uniformity of the filter cakes by measuring the zinc content. The five-spot test (upper left bottom left, centre, upper right, bottom right) was used for estimating the uniformity of the filter cakes by measuring the zinc content and thickness of the cakes at these selected points. Through observation of the filter cakes formed in the MFP, it is found that triangle cakes were easily formed using raw zinc calcine. The presence of zinc calcine of large particle size inhibits the formation of uniform cakes due to its good The presence zinc calcine of large particle size inhibits the formation of uniform cakes due to its good settleability: thus, small size particles should be selected.Choosing the particle size of zinc calcine less than 106 gm仃,able 1 1. which could be obtained in actual production, a series of experiments regarding the filter cake formation were conducted. and the results are presented in Fig.2. From Fig.2.2, using zinc calcines with particle sizes less than 1 06 gm, the zinc content and filter cake thickness vary clearly at the five tested points when the When the filter chamber width is 40 mln, suggesting that the cake uniformity is poor under this condition, which might be due to long sedimentation time. When the filter chamber width is 30 lnnl, the cake uniformity is improved significantly relative to the chamber width of 40 nun. When the filter chamber width is 20 mm, the cake uniformity is improved significantly. When the filter chamber width is 20 mm, the cake uniformity is similar to the results obtained as the chamber width is 30 mm. Thus. it can be clearly observed that the uniforlTl filter cakes could be formed by choosing the particle size of zinc calcine to be less than 1 06 Bm for filter chamber widths of 20 mm and 30 mill. As a result, the zinc calcines with particle size 1ess than 1 06 Bm were used in the following filter chamber. As a result, the zinc calcines with particle size 1ess than 1 06 Bm were used in the following experiments. The processing capacity of MFP with 20 mm width chamber is 10wer than that with 30 toni width chamber. The processing capacity of MFP with 20 mm width chamber is 10wer than that with 30 toni width chamber.Therefore. combining the results of processing capacity and cake uniformity,the chamber width of 30 finn was selected in the following The chamber width of 30 finn was selected in the following experiments.

3.2 Leaching of zinc from zinc calcine In this lcaching process, 1 00 L of spent electrolyte solution was added to a 300 L stainless steel drum equipped with a variable speed stirrer and then stirred for approximately 1 h at a speed of 60 r/min. Next, the 1eaching solution was adjusted by adding zinc calcine or Next, the 1eaching solution was adjusted by adding zinc calcine or sulfate acid until the final Zn "concentration of electrolyte was in the range of 130-140 g/L and the final H2S04 concentration was in the range of l-2 g/L. Subsequently, the ZnS04-contained slurry was filtered using a MFE The analysis results of zinc calcine and ZLR are presented in 1 'ables 2 and 3. The analysis results of zinc calcine and ZLR are presented in 1, 2 and 3, respectively. As presented in Table 2, the grade of zinc calcine is 57.52%, in which ZnO approximately accounts for 90.06% of total zinc in mass. Table 3 indicates that in this process of leaching, most of the Zn0 is converted to ZnS04, resulting in the dramatic decrease of the content of ZnO. Table 3 indicates that in this process of leaching most of the Zn0 is converted to ZnS04, resulting in the dramatic decrease of the content of ZnO. After solid-liquid separation using the MFP, many insoluble materials are concentrated in the residue. leaching residue is higher than 20%, causing the extraction rate of zinc in this process to be less than 90%. Analysis of ZLR indicates that zinc iS mainly presented in the forills of ZnO. presented in the forills of ZnFe204, ZnO and ZnS04, which in total account for uD to 80% of the zinc iS.(Thus, a secondary leaching process is required to recover the remaining zinc.

3.3 Leaching of zinc from ZLR In this leaching process, the zinc was extracted from ZLR obtained in Section 3.2 in the form of spent electrolyte washing To dissolve ZnFe204 using MFE, strict leaching conditions, such as high temperature (above 90°C, and high concentration of acid solution (100 -200 g/L), were applied. -Under hi. temperature and high acid concentration conditions, the extraction rate of zinc can increase to approximately 97% [19, 20]. approximately 97% [19, 20]. To enable a comparison with the extraction rate obtained in the traditional route, the lcaching conditions in the present work are under a temperature in the range of 0.5 to 0.5°C. The extraction rate of zinc was determined as follows The lcaching conditions in the present work are under a temperature in the range of 90 to 96 oC and an acid concentration in the range of 1 00 to 200 g/L. Becanse alsoe leaching residues of zinc calcine Becanse also e leaching residues of zinc calcine were fixed in the chamber of the MFP. the high reaction temperature condition was realized through heating of the spent electrolyte. Figure 3 shows the Zn "and H2S04 concentrations with the MFP. Figure 3 shows the Zn "and H2S04 concentrations with leaching time under atemperature in the range of 90 to 96 oC during the leaching process based on MFE From Fig. 3, the Zn "concentration is the highest in the chamber. The Zn "concentration is observed to obviously increase during the initial 5 min, followed by a decrease to 55 gui after washing for 60 min and only a slight change around the level of 55 g/L in the following 30 min. Conversely'the H2S04 concentration obviously decreases during the initial 5 min. followed by a decrease to 55 g/L in the following 30 min. Conversely'the H2S04 concentration obviously decreases during the initial 5 min. followed by an increase to 11 7 g/L after washing for 60 min and then slight changes around the level of 120 g/L in next 30 min. Based on these Based on these above results, it can be concluded that the violently reaction of the leaching residue with the hot spent electrolyte only lasts for approximately 60 min. The analysis result of the residue after hot concentrated acid leaching for 90 min is presented in T2lble 4. Clearlv. the zinc content in the residue reduces significantly from over 20% (Table 3) to less than 1 0% (Table 41. As a consequence, the zinc extraction rate 1ncreases to 97%. This result obviously demonstrates that using a MFP as a leaching reactor could not only ensure a high extraction rate but also reduce the leaching time compared with the traditional hot concentrated acid The short leaching time using a MFP might be due to the constant reaction conditions of high temperature and high acid concentration during the whole process when using a MFE Based on the above results. The short leaching time using a MFP might be due to the constant reaction conditions of high temperature and high acid concentration during the whole process when using a MFE Based on the above results. temperatures, such as at 30 oC, 60 to 70 oC, 70 to 80 oC and 80 to 90 oC. to reduce the energy consumption further. The zinc extraction rate at 30 oC is 92.67% and increases to 94.95% at 60 to 70 oC. When the 1eaching temperature is further increased to 80 to 90 oC, the ex仃action ratio increases to 94.95% at 60 to 70 oC. The ex仃action ratio increases to 95.56%. The temperature of spent electrolyte has an obvious effect on t11e zinc extraction ratio. high zinc extraction could be obtained by increasing the temperature of the electrolyte. High zinc extraction could be obtained by increasing the temperature of leaching, which is consistent wim the results of Ref.f191. Under Iow temperatures, the energy consumption is lower,the extraction ratio can be increased by 1.5 per cent. Under Iow temperatures, the energy consumption is lower,the extraction ratio can not reach the traditional result of 97%.In conelusion, the hot acid leaching only at 90 to 96 oC or above can achieve the ideal result(i). achieve the ideal result(i.e., more than 97%,...).

3.4 Recovery of water-soluble zinc

The water-soluble zinc approximately accounts for 3%of the total zinc in the residue after hot acidTo recover this part of the zinc, the leaching residue was further washed with Water. Figure 5 shows that both the Zn2+and H,S04 concentrations of eluate decrease with increasing washing time. Figure 5 shows that both the Zn2+and H,S04 concentrations of eluate decrease with increasing washing time.especially in the initial 5 min. These results indicate that Zn "and H,S04 These results indicate that Zn "and H,S04 in the zinc residue could be quickly washed out by Water using the MFP. After washing for 25 min, the final Znz+and H2S04 concentrations of eluate decrease to 0.05 ki and H2S04 concentrations of eluate. to 0.05 g/l and 1.25 g/l.pectively. The final residue obtained after being washed and pressed merely contains 6% of zinc. in which the water-soluble zinc only accounts for 0.07% (Table 5), suggesting that the majority of water-soluble zinc is recovered during the water washing process. Compared with the traditional hot concentrated acid leaching process, the water-soluble zinc lost in the leaching residue iS very 10 %. The water-soluble zinc lost in the leaching residue iS very 10W. 3.5 Washing uniformity To estimate the washing results, the washing uniformity of MFP was examined by measuring.Both the total zinc and the water-soluble zinc were measured. Both the total zinc and the water-soluble zinc contents in the final residue. As presented in Rlble 6. change slightly at five selected points (upper left, bottom left, centre,upper right, and bottom right) in the residue, indicating that the hot spent The zinc that can be extracted in zinc calcine and the Water-soluble zinc that can be recovered in the residue are completely uniforiil. The zinc that can be extracted in zinc calcine and the Water-soluble zinc that can be recovered in the residue are completely extracted and recovered by USing the MFP.

4 Conclusions

1] The use of a MFP is found to be completely feasible and effective to 1each and recover zinc from leaching residues ofzinc calcine.

2] The zinc calcines with particle size of less than 1 06 gm and MFP chambers with a width of 30 I/IlTI are proper for establishing unifornl filter cakes to obtain acceptable leaching and recovery results.

Diaphragm filter press Leaching and recovery of zinc from leaching residue of zinc calcine based on membrane filter pres s-plate and frame chamber membrane filter press

2 Experimental 623

2.1 Materials The experimental study was performed using zinc calcine with a composition of 57% zinc, which was purchased from Hunan Province, China. Spent electrolyte containing 1 60 g/L of H2S04 and 50 g/L of Zn" was used in all of the leaching experiments. under all examined conditions. Under all examined conditions, the zinc concentration was determined based on GB/T 14353.3-2010『17〕, and the hydrogen ion concen仃ation fH+, was measured based on GB 6498.2-2001『181. The membrane filter press (KM470) was from Beijing ZSC Solid-Liquid Separating Technology Co. The membrane filter press (KM470) was from Beijing ZSC Solid-Liquid Separation Technology Co.)

2.2 Experimental procedure The diagram of leaching and recovery of zinc from zinc calcine is presented in Fig. 1.111e proper production process is described briefly as follows. described briefly as follows.1 1 leaching in stirred.tank reactor: Spent electrolyte or sulfuric acid was added to the crashed zinc calcine to leach zinc ions from the ores and to obtain the ZnS04-containing zinc. ions from the ores and to obtain the ZnS04-contained slurry. 2. filtration: the ZnS04-contained slurry was pumped into MFP through central feeding hole and filter pressed to obtain the filter. The ZnS04-contained slurry was pumped into MFP through central feeding hole and filter pressed to obtain the filter cakes (i.e., ZLR); next, the filtrate (1eaching liquor) entered the subsequent production process. 3. 1eaching in Ⅳ[FP: Spent electrolyte at the desired temperature was pumped into the MFP and reacted with filter cakes to leach zinc again and simultaneously recover part of ZnS04. 4) water washing: The filter cakes were washed again with flesh water to further recover ZnS04. 5) pressing: Water with a pressure of 1.5 mL was used for the treatment. with a pressureThe eluate obtained from spent electrolyte washing and flesh water washing steps was then pumped into the membrane plates, which was maintained for 20 min to reduce the water content of filter cakes, and the pressed filter cakes were subsequently discharged from the MFP and transported to landfills. The eluate obtained from spent electrolyte washing and flesh water washing steps were collected and returned to spent electrolyte tank and eluate collection tank. The eluate obtained from spent electrolyte washing and flesh water washing steps were collected and returned to spent electrolyte tank and eluate collection tank, respectively.

3 Results and discussion

3.1 Filter cake formation To obtain a high zinc ex仃action rate and recovery rate using an MFP.the most important step is to obtain uniform filter cakes.the particle size of zinc calcine and sedimentation time.which are directly involved with the width of the filter chambers. particle size of zinc calcine and sedimentation time, which are directly involved with the width of the filter chambers, are the most important parameters regarding the uniformity of filter cake. The particle size of zinc calcine and sedimentation time, which are directly involved with the width of the filter chambers, are the most important parameters regarding the uniformity of filter cake. The five-spot test (upper left, bottom left, centre,upper right, bottom right) was used for estimating the uniformity of the filter cakes by measuring the zinc content. The five-spot test (upper left bottom left, centre, upper right, bottom right) was used for estimating the uniformity of the filter cakes by measuring the zinc content and thickness of the cakes at these selected points. Through observation of the filter cakes formed in the MFP, it is found that triangle cakes were easily formed using raw zinc calcine. The presence of zinc calcine of large particle size inhibits the formation of uniform cakes due to its good The presence zinc calcine of large particle size inhibits the formation of uniform cakes due to its good settleability: thus, small size particles should be selected.Choosing the particle size of zinc calcine less than 106 gm仃,able 1 1. which could be obtained in actual production, a series of experiments regarding the filter cake formation were conducted. and the results are presented in Fig.2. From Fig.2.2, using zinc calcines with particle sizes less than 1 06 gm, the zinc content and filter cake thickness vary clearly at the five tested points when the When the filter chamber width is 40 mln, suggesting that the cake uniformity is poor under this condition, which might be due to long sedimentation time. When the filter chamber width is 30 lnnl, the cake uniformity is improved significantly relative to the chamber width of 40 nun. When the filter chamber width is 20 mm, the cake uniformity is improved significantly. When the filter chamber width is 20 mm, the cake uniformity is similar to the results obtained as the chamber width is 30 mm. Thus. it can be clearly observed that the uniforlTl filter cakes could be formed by choosing the particle size of zinc calcine to be less than 1 06 Bm for filter chamber widths of 20 mm and 30 mill. As a result, the zinc calcines with particle size 1ess than 1 06 Bm were used in the following filter chamber. As a result, the zinc calcines with particle size 1ess than 1 06 Bm were used in the following experiments. The processing capacity of MFP with 20 mm width chamber is 10wer than that with 30 toni width chamber. The processing capacity of MFP with 20 mm width chamber is 10wer than that with 30 toni width chamber.Therefore. combining the results of processing capacity and cake uniformity,the chamber width of 30 finn was selected in the following The chamber width of 30 finn was selected in the following experiments.

3.2 Leaching of zinc from zinc calcine In this lcaching process, 1 00 L of spent electrolyte solution was added to a 300 L stainless steel drum equipped with a variable speed stirrer and then stirred for approximately 1 h at a speed of 60 r/min. Next, the 1eaching solution was adjusted by adding zinc calcine or Next, the 1eaching solution was adjusted by adding zinc calcine or sulfate acid until the final Zn "concentration of electrolyte was in the range of 130-140 g/L and the final H2S04 concentration was in the range of l-2 g/L. Subsequently, the ZnS04-contained slurry was filtered using a MFE The analysis results of zinc calcine and ZLR are presented in 1 'ables 2 and 3. The analysis results of zinc calcine and ZLR are presented in 1, 2 and 3, respectively. As presented in Table 2, the grade of zinc calcine is 57.52%, in which ZnO approximately accounts for 90.06% of total zinc in mass. Table 3 indicates that in this process of leaching, most of the Zn0 is converted to ZnS04, resulting in the dramatic decrease of the content of ZnO. Table 3 indicates that in this process of leaching most of the Zn0 is converted to ZnS04, resulting in the dramatic decrease of the content of ZnO. After solid-liquid separation using the MFP, many insoluble materials are concentrated in the residue. leaching residue is higher than 20%, causing the extraction rate of zinc in this process to be less than 90%. Analysis of ZLR indicates that zinc iS mainly presented in the forills of ZnO. presented in the forills of ZnFe204, ZnO and ZnS04, which in total account for uD to 80% of the zinc iS.(Thus, a secondary leaching process is required to recover the remaining zinc.

3.3 Leaching of zinc from ZLR In this leaching process, the zinc was extracted from ZLR obtained in Section 3.2 in the form of spent electrolyte washing To dissolve ZnFe204 using MFE, strict leaching conditions, such as high temperature (above 90°C, and high concentration of acid solution (100 -200 g/L), were applied. -Under hi. temperature and high acid concentration conditions, the extraction rate of zinc can increase to approximately 97% [19, 20]. approximately 97% [19, 20]. To enable a comparison with the extraction rate obtained in the traditional route, the lcaching conditions in the present work are under a temperature in the range of 0.5 to 0.5°C. The extraction rate of zinc was determined as follows The lcaching conditions in the present work are under a temperature in the range of 90 to 96 oC and an acid concentration in the range of 1 00 to 200 g/L. Becanse alsoe leaching residues of zinc calcine Becanse also e leaching residues of zinc calcine were fixed in the chamber of the MFP. the high reaction temperature condition was realized through heating of the spent electrolyte. Figure 3 shows the Zn "and H2S04 concentrations with the MFP. Figure 3 shows the Zn "and H2S04 concentrations with leaching time under atemperature in the range of 90 to 96 oC during the leaching process based on MFE From Fig. 3, the Zn "concentration is the highest in the chamber. The Zn "concentration is observed to obviously increase during the initial 5 min, followed by a decrease to 55 gui after washing for 60 min and only a slight change around the level of 55 g/L in the following 30 min. Conversely'the H2S04 concentration obviously decreases during the initial 5 min. followed by a decrease to 55 g/L in the following 30 min. Conversely'the H2S04 concentration obviously decreases during the initial 5 min. followed by an increase to 11 7 g/L after washing for 60 min and then slight changes around the level of 120 g/L in next 30 min. Based on these Based on these above results, it can be concluded that the violently reaction of the leaching residue with the hot spent electrolyte only lasts for approximately 60 min. The analysis result of the residue after hot concentrated acid leaching for 90 min is presented in T2lble 4. Clearlv. the zinc content in the residue reduces significantly from over 20% (Table 3) to less than 1 0% (Table 41. As a consequence, the zinc extraction rate 1ncreases to 97%. This result obviously demonstrates that using a MFP as a leaching reactor could not only ensure a high extraction rate but also reduce the leaching time compared with the traditional hot concentrated acid The short leaching time using a MFP might be due to the constant reaction conditions of high temperature and high acid concentration during the whole process when using a MFE Based on the above results. The short leaching time using a MFP might be due to the constant reaction conditions of high temperature and high acid concentration during the whole process when using a MFE Based on the above results. temperatures, such as at 30 oC, 60 to 70 oC, 70 to 80 oC and 80 to 90 oC. to reduce the energy consumption further. The zinc extraction rate at 30 oC is 92.67% and increases to 94.95% at 60 to 70 oC. When the 1eaching temperature is further increased to 80 to 90 oC, the ex仃action ratio increases to 94.95% at 60 to 70 oC. The ex仃action ratio increases to 95.56%. The temperature of spent electrolyte has an obvious effect on t11e zinc extraction ratio. high zinc extraction could be obtained by increasing the temperature of the electrolyte. High zinc extraction could be obtained by increasing the temperature of leaching, which is consistent wim the results of Ref.f191. Under Iow temperatures, the energy consumption is lower,the extraction ratio can be increased by 1.5 per cent. Under Iow temperatures, the energy consumption is lower,the extraction ratio can not reach the traditional result of 97%.In conelusion, the hot acid leaching only at 90 to 96 oC or above can achieve the ideal result(i). achieve the ideal result(i.e., more than 97%,...).

3.4 Recovery of water-soluble zinc

The water-soluble zinc approximately accounts for 3%of the total zinc in the residue after hot acidTo recover this part of the zinc, the leaching residue was further washed with Water. Figure 5 shows that both the Zn2+and H,S04 concentrations of eluate decrease with increasing washing time. Figure 5 shows that both the Zn2+and H,S04 concentrations of eluate decrease with increasing washing time.especially in the initial 5 min. These results indicate that Zn "and H,S04 These results indicate that Zn "and H,S04 in the zinc residue could be quickly washed out by Water using the MFP. After washing for 25 min, the final Znz+and H2S04 concentrations of eluate decrease to 0.05 ki and H2S04 concentrations of eluate. to 0.05 g/l and 1.25 g/l.pectively. The final residue obtained after being washed and pressed merely contains 6% of zinc. in which the water-soluble zinc only accounts for 0.07% (Table 5), suggesting that the majority of water-soluble zinc is recovered during the water washing process. Compared with the traditional hot concentrated acid leaching process, the water-soluble zinc lost in the leaching residue iS very 10 %. The water-soluble zinc lost in the leaching residue iS very 10W. 3.5 Washing uniformity To estimate the washing results, the washing uniformity of MFP was examined by measuring.Both the total zinc and the water-soluble zinc were measured. Both the total zinc and the water-soluble zinc contents in the final residue. As presented in Rlble 6. change slightly at five selected points (upper left, bottom left, centre,upper right, and bottom right) in the residue, indicating that the hot spent The zinc that can be extracted in zinc calcine and the Water-soluble zinc that can be recovered in the residue are completely uniforiil. The zinc that can be extracted in zinc calcine and the Water-soluble zinc that can be recovered in the residue are completely extracted and recovered by USing the MFP.

4 Conclusions

1] The use of a MFP is found to be completely feasible and effective to 1each and recover zinc from leaching residues ofzinc calcine.

2] The zinc calcines with particle size of less than 1 06 gm and MFP chambers with a width of 30 I/IlTI are proper for establishing unifornl filter cakes to obtain acceptable leaching and recovery results.

Previous. Next post.
Expand More
Welcome to visit our factory!

loading...

en_GBEN
主站蜘蛛池模板: 济南 液压机械有限公司| 山东传洋钢铁有限公司| 苏州施米特机械有限公司| 上海金纬挤出机械制造有限公司| 石家庄煤矿机械有限公司| 武汉机械制造有限公司| 山东源鑫农牧机械有限公司| 河北坤达起重设备有限公司 | 山东泰峰起重设备制造有限公司| 老挝第一钢铁有限公司| 徐工建机机械有限公司| 南京儒一航空机械装备有限公司 | 常州腾睿机械有限公司| 重庆培柴机械制造有限公司| 枣庄金正钢铁有限公司| 山东恒升机械有限公司| 诸城市博康机械有限公司| 速技能机械有限公司| 衢州巨鑫机械有限公司| 金田豪迈木业机械有限公司| 山东鲁机械有限公司| 浙江万宝机械有限公司| 金韦尔机械有限公司| 淮安华辉机械设备有限公司| 山东山推机械有限公司| 安特苏州精密机械有限公司| 北京机械设备租赁有限公司| 常州市工程机械有限公司| 大连日立机械设备有限公司| 陕西柴油机重工有限公司| 上海紫明印刷机械有限公司| 重庆市机械有限公司| 川岛洗涤机械有限公司| 长江液压机械有限公司| 昆山奥德机械有限公司| 广东耐施特机械有限公司| 苏州奥德机械有限公司| 石家庄 机械有限公司| 唐山唐银钢铁有限公司| 广州华劲机械有限公司| 大连胜龙包装机械有限公司| 登福机械(上海)有限公司| 湖南金塔机械制造有限公司| 温州印刷机械有限公司| 江阴市长达钢铁有限公司| 北默压缩机械有限公司| 重庆志成机械有限公司| 吉林牧神机械有限公司| 昆山乙盛机械有限公司招聘启事 | 青岛特殊钢铁有限公司| 镇江斯伊格机械有限公司| 广州市 机械有限公司| 招远华丰机械设备有限公司| 佳先机械制造有限公司| 南京远景机械有限公司| 绍兴越发机械有限公司| 梧州沃华机械有限公司| 玉环机械制造有限公司| 北京起重设备有限公司| 曲靖呈钢铁有限公司| 扬州禹笑水利机械有限公司| 上海制药机械有限公司| 沂南县宏发机械有限公司| 大连军峰机械有限公司| 浙江炜冈机械有限公司| 昆山机械 有限公司| 东风悦达起亚汽车有限公司| 上海金相机械有限公司| 常州日月机械有限公司| 佛山市海之力机械有限公司| 广州市善友机械设备有限公司| 汉中燕航精工机械有限公司| 西安 机械设备有限公司| 天津文洲机械有限公司| 绵阳机械制造有限公司| 永华机械有限公司招聘| 江苏甲钢钢铁有限公司| 山东达普机械制造有限公司| 德昌机械制造有限公司| 河南万杰食品机械有限公司| 永华机械有限公司招聘| 杭州康比机械有限公司| 西安 机械有限公司| 湖北机械制造有限公司| 上海中远海运重工有限公司| 长春机械设备有限公司| 玛狮工程机械有限公司| 泰瑞机械有限公司待遇| 江苏谷登工程机械装备有限公司 | 大江重工焦作有限公司| 青岛谊金华塑料机械有限公司| 溧阳市机械有限公司| 藏不起服饰有限公司| 无锡市机械制造有限公司| 上海隆康机械设备有限公司| 常州杰洋精密机械有限公司 | 济南市恒宇机械有限公司| 国义特种钢铁有限公司| 苏州爱德克精密机械有限公司| 广州萱裕机械有限公司| 山东银鹰炊事机械有限公司| 包装机械制造有限公司| 江阴市中立机械工业有限公司 | 新乡市豫新起重机械有限公司 | 泰安海松机械有限公司| 宁波钢铁有限公司地址| 郑州中嘉重工有限公司| 河北小犟牛工程机械有限公司| 锦州天晟重工有限公司| 上海 鑫机械设备有限公司| 瀚乐电子机械有限公司| 大丰联鑫钢铁有限公司| 烨隆精密机械有限公司| 常德机械制造有限公司| 深圳市高士达精密机械有限公司| 太平洋机械有限公司| 中山伙伴自动化机械有限公司| 广州汉达机械有限公司| 大连 起 有限公司| 温州市春来包装机械有限公司| 杭州玻璃机械有限公司| 广州市机械设备有限公司| 江苏柳工机械有限公司| 无锡诺德传动机械有限公司| 力华机械设备有限公司| 浙江起重机械有限公司| 佛山丰又丰机械有限公司| 江苏省机械有限公司| 河北金鼎钢铁有限公司| 南通图海机械有限公司| 重庆市机械有限公司| 高臻机械设备有限公司 | 唐山鑫达钢铁有限公司| 木工机械设备有限公司| 梧州沃华机械有限公司| 湖南省湘粮机械制造有限公司 | 金田豪迈木业机械有限公司| 上海海邦机械设备制造有限公司| 玉环县三和机械制造有限公司| 余姚市机械有限公司| 利星行机械有限公司| 上海众和包装机械有限公司| 江苏医疗机械有限公司| 兰州兰石重工有限公司| 常州武进机械有限公司| 志高机械有限公司官网| 常州达德机械有限公司| 河源德润钢铁有限公司| 济南 机械设备有限公司| 山东金亿机械制造有限公司| 重庆市机械有限公司| 合肥二宫机械有限公司| 上海春明机械制造有限公司| 保定向阳航空精密机械有限公司| 新昌县蓝翔机械有限公司| 浙江红旗机械有限公司| 迎阳无纺机械有限公司| 南京机械设备有限公司| 曲阜润丰机械有限公司| 郑州志乾机械设备有限公司| 龙口中宇机械有限公司| 通达塑料机械有限公司| 江阴市勤业化工机械有限公司| 东莞协鑫机械有限公司| 河南永威起重机有限公司| 湖南 机械设备有限公司| 江阴市长达钢铁有限公司| 江苏沃元精密机械有限公司| 浙江自力机械有限公司| 青州市远航机械设备有限公司 | 安徽精密机械有限公司| 温州博大机械有限公司| 青岛华华机械有限公司| 佛山市机械设备有限公司| 山东利达工程机械有限公司| 中意合资 威尼托机械有限公司| 青岛顺丰机械有限公司| 河南华北起重吊钩有限公司| 广东信昌机械有限公司| 上海宏挺机械设备制造有限公司 | 湖南中一惠龙机械设备有限公司| 江苏威鹰机械有限公司| 徐州农丰机械有限公司| 江西省机械有限公司| 福建联丰机械有限公司| 常州市永明机械制造有限公司| 合肥至信机械有限公司| 澳太机械制造有限公司| 龙口隆基机械有限公司| 杭州建泰机械有限公司| 宁波力盟机械有限公司| 玉环华邦机械有限公司| 汕头市伟力塑料机械厂有限公司| 杭州玻璃机械有限公司| 东莞市力华机械设备有限公司| 杭州岛文机械有限公司| 宁波塑料机械制造有限公司| 泰州机械 有限公司| 浙江齐鲤机械有限公司| 昆山富邦机械有限公司| 东莞机械制造有限公司| 无锡英那威特机械发展有限公司| 江苏卫东机械有限公司| 无锡旭英机械有限公司| 上海起发实验试剂有限公司| 江苏洪流化工机械有限公司| 山东数控机械有限公司| 上海重工机械有限公司| 浙江常至机械有限公司| 苏州开隆机械有限公司| 大连世达重工有限公司| 中兴机械制造有限公司| 宿迁市机械有限公司| 深圳优捷机械有限公司| 嘉兴精密机械有限公司| 深圳起航电商有限公司| 湖南长河机械有限公司| 山东讴神机械制造有限公司| 温州宇英机械有限公司| 上海阿泰瑞克重工有限公司| 西安柳工机械有限公司| 西安亿起来贸易有限公司| 福建盛达机械有限公司| 沈阳恒力机械有限公司| 青岛诺恩包装机械有限公司| 郑州中联收获机械有限公司| 合肥食品机械有限公司| 富阳液压机械有限公司| 机械(常州)有限公司| 广州市荣艺食品机械有限公司| 新昌县蓝翔机械有限公司| 云南工程机械有限公司| 重庆九源机械有限公司| 京山力拓机械有限公司| 烟台利丰机械有限公司| 山东 机械制造有限公司| 上海化工机械厂有限公司| 郑州新水工机械有限公司| 深圳格瑞克机械有限公司| 上海大松机械有限公司| 郑州鑫宇机械制造有限公司| 青岛义龙包装机械有限公司| 浙江鸿森机械有限公司| 科达机械制造有限公司| 中核华兴机械化工程有限公司| 杭州驰耐传动机械有限公司| 无锡精派机械有限公司| 南京润森工程机械有限公司| 山西瑞飞机械制造有限公司| 陕西 机械 有限公司| 葛洲坝机械船舶有限公司| 潍坊天宇机械有限公司| 三一起重机械有限公司| 青岛双星铸造机械有限公司| 三国精密机械有限公司| 重庆机械制造有限公司| 嘉兴机械设备有限公司| 无锡市阳通机械设备有限公司| 德马格起重机械有限公司| 芜湖机械制造有限公司| 泉州工程机械有限公司| 上海精密机械制造有限公司 | 泰田液压机械有限公司| 华亿机械制造有限公司| 湖南省湘粮机械制造有限公司| 上海神农机械有限公司| 江苏精明机械有限公司| 南京 机械设备有限公司| 鸿兴织带机械有限公司| 柳州欧维姆机械有限公司| 三一起重机械有限公司| 长沙三一重工有限公司| 南京重霸起重设备有限公司| 滕州三合机械有限公司| 合肥机械设备有限公司| 大连科信机械有限公司| 上海工程机械有限公司| 杭州三瑞机械有限公司| 上海科斯包装机械有限公司| 友池精密机械有限公司| 扬州永瑞机械有限公司| 温州贝诺机械有限公司| 芜湖 机械制造有限公司| 上海余特包装机械制造有限公司 | 土平机械江苏有限公司| 佛山市钲昌机械设备有限公司| 北京永创通达机械设备有限公司 | 上海又高机械有限公司| 泉州工程机械有限公司| 上海钊凯包装机械有限公司| 广州冠浩机械设备有限公司| 唐山安丰钢铁有限公司| 诸城晶品机械有限公司| 山东鲁工机械有限公司| 山东山矿机械有限公司| 辽宁机械制造有限公司| 苏州精雕精密机械工程有限公司| 重庆维庆液压机械有限公司 | 河北机械制造有限公司| 北京精密机械有限公司| 北京机械设备租赁有限公司| 洛阳机械制造有限公司| 曲阜广鑫机械有限公司| 杭州双林机械有限公司| 上海汉 机械有限公司| 江苏科圣化工机械有限公司| 上海慕鼎机械设备有限公司| 江苏 重型机械有限公司| 宁波联成机械有限公司| 潍坊元鸣机械有限公司| 昆山日晟机械有限公司| 温州博宇机械有限公司| 石家庄瑞辉机械设备有限公司| 溧阳科华机械制造有限公司| 常州化工机械有限公司| 赣云食品机械有限公司| 志高精密机械有限公司| 河南永威起重机有限公司| 滨州市机械有限公司| 广东荣钢钢铁有限公司| 定州宏远机械有限公司| 张家港市机械制造有限公司| 舒勒锻压机械有限公司| 济南光先数控机械有限公司| 东铁机械制造有限公司| 成都康博机械有限公司| 东莞市新望包装机械有限公司| 广州力净洗涤机械有限公司| 河南起重机器有限公司| 芜湖汇丰机械工业有限公司| 威海石岛重工有限公司| 重庆正格农业机械有限公司| 广州市勤达机械设备有限公司| 安徽国梁机械设备有限公司| 上海汉普机械有限公司| 日照山东钢铁有限公司| 德大机械昆山有限公司| 上海丁博重工机械有限公司 | 诸城市中天机械有限公司| 上海尼法机械有限公司| 上海派协包装机械有限公司| 青岛锻压机械有限公司| 州东方机械有限公司| 无锡双麦机械有限公司| 安特苏州精密机械有限公司| 吴江迈锐机械有限公司怎么样| 浙江万宝机械有限公司| 快克数控机械有限公司| 吴江聚力机械有限公司| 福建巨霸机械有限公司| 上海昶旭包装机械有限公司| 东风井关农业机械有限公司| 昆山塑料机械有限公司| 大连卓远重工有限公司| 金鹰重工有限公司招聘| 华电曹妃甸重工装备有限公司| 上海精密机械制造有限公司 | 云南机械制造有限公司| 上海乾享机械设备有限公司| 苏州德扬数控机械有限公司| 东莞市鑫焘机械有限公司| 南昌机械设备有限公司| 富华重工有限公司老板| 上海制药机械有限公司| 济宁通佳机械有限公司| 济南弘川包装机械有限公司| 唐山泰钢钢铁有限公司| 河北宏业机械有限公司| 河南机械设备制造有限公司| 东莞市利瀚机械有限公司| 纸箱机械制造有限公司| 广东顺发起重设备有限公司| 浙江中禾机械有限公司| 大连龙尧塑料机械有限公司| 成都蓉诚机械设备有限公司| 张家港市港达机械有限公司| 无锡市丰玮机械设备有限公司| 大连地拓重工有限公司怎么样| 苏州机械设备有限公司| 抚顺起亮食品有限公司| 浙江嘉益机械有限公司| 山东机械设备有限公司怎么样| 苏州三维精密机械有限公司| 中阳钢铁有限公司电话| 浙江双鸟机械有限公司| 浙江安驰机械有限公司| 台进精密机械有限公司| 国机重工洛阳有限公司| 恒麦食品机械有限公司| 东莞市台旺机械有限公司| 山西风源机械制造有限公司| 诸城市志诺机械有限公司| 浙江万龙机械有限公司| 成都杰瑞达工程机械有限公司 | 郑州世纪精信机械制造有限公司 | 佛山恒力泰机械有限公司| 海的动力机械有限公司| 无锡市浦尚精密机械有限公司 | 五洋纺织机械有限公司| 广州领新机械实业有限公司| 安徽中晨机械有限公司| 昆山乙盛机械工业有限公司| 物理农林机械有限公司| 安徽玻璃机械有限公司| 常州国丰机械有限公司| 上海沃勒起重设备有限公司| 新世纪机械有限公司| 华盛机械设备有限公司| 青岛璞盛机械有限公司| 河南双鑫钢铁有限公司| 金坛市 机械有限公司| 宁波华美达机械制造有限公司 | 上海龙应机械制造有限公司| 北京大森长空包装机械有限公司| 南皮县中顺环保机械有限公司| 新乡市特昌振动机械有限公司 | 江苏如皋钢铁有限公司| 江阴市豪亚机械制造有限公司| 大同机械 有限公司| 凯斯纽荷兰机械 哈尔滨 有限公司| 佛山市恒力泰机械有限公司| 绵阳新晨动力机械有限公司招聘 | 绍兴联科机械有限公司| 布勒机械设备有限公司| 上海嘉亿机械有限公司| 康纳机械制造有限公司| 中山中炬精工机械有限公司| 工机械制造有限公司| 安徽永成电子机械技术有限公司 | 天津天重江天重工有限公司| 成都固特机械有限公司| 广东恒联食品机械有限公司 | 广东机械设备有限公司| 张家港市塑机械有限公司| 广州铸星机械有限公司| 重庆洲泽机械制造有限公司| 郑州鼎盛机械设备有限公司| 河北永明地质工程机械有限公司| 广州萱裕机械有限公司| 宁波天竺工程机械有限公司| 徐州宝丰钢铁有限公司| 镇江机械制造有限公司| 张家口煤机械有限公司| 新劲力机械有限公司| 大洋食品机械有限公司| 优瑞纳斯液压机械有限公司| 佛山海之力机械有限公司| 山东新船重工有限公司| 德国arku机械制造有限公司| 众力达机械有限公司| 建材机械制造有限公司| 重庆鹏程钢铁有限公司| 上海板换机械设备有限公司 | 苏州久富农业机械有限公司 | 诸城海宝环保机械有限公司 | 大连红日机械有限公司| 白鸽食品机械有限公司| 荆州祥达机械制造有限公司| 苏州奥天诚机械有限公司| 浙江华天机械有限公司| 郑州市联华机械制造有限公司| 江苏竣业过程机械设备有限公司| 苏州博机械有限公司| 南京机械电子有限公司| 宁波隆源精密机械有限公司 | 青岛木工机械有限公司| 天津石油机械有限公司| 重庆茂田机械有限公司| 上海七洋液压机械有限公司| 辽宁 机械制造有限公司| 新乡市起重机有限公司| 江苏中威重工机械有限公司| 众工机械机械有限公司| 北京中车重工机械有限公司 | 河南江瀚机械制造有限公司| 玉环华邦机械有限公司| 东莞市森佳机械有限公司| 老挝第一钢铁有限公司| 上海乾享机械设备有限公司| 新乡市海纳筛分机械制造有限公司| 浙江三永机械有限公司| 无锡诺亚机械有限公司| 同安木工机械有限公司| 咸阳 机械制造有限公司| 成都艾威机械有限公司| 深圳龙润彩印机械设备有限公司 | 上海市机械有限公司| 广州坚诺机械设备有限公司 | 上海纽荷兰农业机械有限公司 | 苏州旭展机械有限公司| 哈尔滨机械有限公司| 无锡市丰玮机械设备有限公司| 东莞市得士威机械工业有限公司 | 成都杰瑞达工程机械有限公司| 深圳新劲力机械有限公司| 冷水江钢铁有限公司| 苏州伟鼎机械设备有限公司| 江阴博丰钢铁有限公司| 源田床具机械有限公司| 泉州恒泉机械有限公司| 江阴凯澄起重机械有限公司| 震德塑料机械有限公司| 山东正丰钢铁有限公司| 泰而勒食品机械贸易(上海)有限公司| 洛阳美卓重工机械有限公司| 西门子机械传动 天津 有限公司| 新乡市矿山起重机械有限公司| 江苏新瑞机械有限公司| 广州众起办公用品有限公司| 宏力机械设备有限公司| 延边鸿起实业有限公司| 无锡机械电器有限公司| 中山松德印刷机械有限公司| 青岛科尼乐重工有限公司| 荣龙精密机械有限公司| 浙江全兴机械制造有限公司| 浙江鸿森机械有限公司| 贝奇尔机械有限公司| 科润达机械有限公司| 中山市凌宇机械有限公司| 烟台精越达机械设备有限公司 | 山东鲁成起重机械有限公司| 上海涵延机械有限公司| 恒联食品机械有限公司| 无锡金球机械有限公司| 四川机械设备有限公司| 苏州工业园区嘉宝精密机械有限公司 | 河南共威机械设备有限公司| 上海申虎包装机械设备有限公司 | 青岛晟森机械有限公司| 苏州君驰联动机械有限公司 | 长城机械制造有限公司| 深圳市荣德机械设备有限公司 | 河南良益机械有限公司| 上海敏杰机械有限公司| 河南省平原矿山机械有限公司| 威斯特机械有限公司| 广东华鼎机械有限公司| 娄底 机械有限公司| 河南机械设备制造有限公司列表| 深圳海邻机械设备有限公司| 友佳精密机械有限公司| 江苏长虹涂装机械有限公司| 苏州海骏自动化机械有限公司| 机械成套设备有限公司| 中安重工自动化装备有限公司| 河北迪森机械制造有限公司| 鑫鑫建筑机械有限公司| 武汉机械工程有限公司| 中机北方机械有限公司| 辽宁富一机械有限公司| 湖北创联重工有限公司| 广州市台展机械有限公司| 泰安越泰机械有限公司| 阳煤化工机械有限公司| 江苏千里机械有限公司| 杭州正驰达精密机械有限公司| 江苏机械设备制造有限公司| 青岛橡塑机械有限公司| 苏州柯瑞机械有限公司| 苏州宇钻机械有限公司| 江阴市长达钢铁有限公司| 长沙宏银机械有限公司| 浙江雄鹏机械有限公司| 南阳机械制造有限公司| 常州杰和机械有限公司| 上海杰姆博机械设备有限公司 | 张家港机械设备有限公司| 山东鲁樽机械有限公司| 首钢长治钢铁有限公司| 烟台鑫海矿山机械有限公司 | 上海金纬机械有限公司| 青岛精锐机械制造有限公司| 山东德州恒特重工有限公司| 江苏中热机械设备有限公司| 上海凯机械有限公司| 东莞%机械%有限公司| 临海机械有限公司招聘| 高明鸿溢机械有限公司| 徐州荣阳钢铁有限公司| 锦州天晟重工有限公司| 嵊州市机械有限公司| 河北昭达机械有限公司| 广州市中铭印刷机械有限公司 | 张家口机械有限公司| 四川阳光机械有限公司| 重庆华渝重工机电有限公司| 河北鑫晟机械有限公司| 登福机械上海有限公司| 上海紫明印刷机械有限公司| 郑州市机械有限公司| 重庆远风机械有限公司| 天津市仁翼钢铁有限公司| 上海起发实验试剂有限公司| 无锡通用机械厂有限公司| 成都的起重有限公司| 河北裕华钢铁有限公司| 衡阳沃力机械有限公司| 乐清市锐成机械有限公司| 江阴市联拓重工机械有限公司| 佛山建邦机械有限公司| 苏州阔泽精密机械有限公司| 苏州同大机械有限公司| 上海澳昊机械制造有限公司 | 烟台市利达木工机械有限公司 | 烟台海州机械有限公司| 深圳市创世纪机械有限公司| 河南宝润机械有限公司| 佛山市洪峰机械有限公司| 佛山市浩铭达机械制造有限公司| 富杰精密机械有限公司| 泉州奇星机械有限公司| 上海丰泽机械有限公司| 河南钢铁贸易有限公司| 昆山胜代机械有限公司| 山东云光钢铁有限公司| 力 机械 有限公司| 南京起重机械总厂有限公司| 高臻机械机械有限公司| 机械化施工有限公司| 江苏润山机械有限公司| 邯郸市机械有限公司| 张家口煤矿机械有限公司| 潍坊天洁机械有限公司| 温州海翔机械有限公司| 辽阳喜旺机械制造有限公司| 星火包装机械有限公司| 四川德盛钢铁有限公司| 重庆机械制造有限公司| 华菱涟源钢铁有限公司| 浙江大源机械有限公司| 重庆金丰机械有限公司| 河南合力起重机械有限公司 | 上海诚淘机械有限公司| 浙江启博机械有限公司| 山东永峰钢铁有限公司| 张家港市塑机械有限公司| 上海鼎龙机械有限公司| 浙江天盛机械有限公司| 东莞市巨冈机械工业有限公司| 唐山利丰机械有限公司| 湖北鄂重重型机械有限公司| 精一机械(中山)有限公司| 温州名瑞机械有限公司| 江苏锐成机械有限公司| 广州大圆机械设备有限公司| 广州汉牛机械设备有限公司 | 上海炬钢机械制造有限公司| 河南机械设备制造有限公司列表| 浙江欧迈特减速机械有限公司 | 天津传动机械有限公司| 南通海森特重工有限公司| 恒利达机械有限公司| 昌利机械制造有限公司| 华亿机械制造有限公司| 上海方星机械设备制造有限公司| 武汉船舶重工有限公司| 德阳瑞隆机械有限公司| 山东钢铁日照钢铁有限公司| 太仓机械设备有限公司| 常州好迪机械有限公司| 江阴长达钢铁有限公司| 众立机械制造有限公司| 四川腾中重工机械有限公司| 东莞市宝腾机械有限公司| 徐州中嘉工程机械有限公司| 佛山柯田包装机械有限公司| 上海众冠食品机械有限公司| 欧克机械制造有限公司| 五矿钢铁上海有限公司| 重庆箭驰机械有限公司| 重庆捷庆机械有限公司| 南通国盛精密机械有限公司| 河南江瀚机械制造有限公司| 河南省邦恩机械制造有限公司| 山东米科思机械设备有限公司| 昆山奥德机械有限公司| 临沂盛德机械有限公司| 佛山市信虹精密机械有限公司| 沈阳瑞熠机械有限公司| 东莞市途锐机械有限公司| 绍兴越发机械有限公司| 烟台万事达金属机械有限公司| 宁波佳诚机械有限公司| 立信染整机械深圳有限公司| 浙江中兴机械制造有限公司| 江西鑫通机械有限公司| 济南天助升降机械有限公司| 塑料机械 有限公司| 机械配件苏州有限公司| 中山市机械设备有限公司| 诸城市铭威食品机械有限公司| 苏州新风机械有限公司| 东莞市联顺机械有限公司| 镇江斯伊格机械有限公司| 沈阳 机械制造有限公司| 瑞安瑞泰机械有限公司| 东莞包装机械有限公司| 无锡械锐机械有限公司| 洛阳奥图机械设备有限公司| 河北工程机械有限公司| 江阴市华夏包装机械有限公司| 上海申德机械有限公司| 诸城市恒顺机械有限公司| 玻璃设备机械有限公司| 南通安港机械有限公司| 洛阳洛北重工机械有限公司| 西安机械制造有限公司| 常州创领机械有限公司| 四川阳光机械有限公司| 金属制品有限公司起名| 定州宏远机械有限公司| 台州博州机械有限公司| 潍坊重工机械有限公司| 东莞市佐臣自动化机械有限公司| 上海国翔包装机械制造有限公司| 唐山燕钢钢铁有限公司| 常州创领机械有限公司| 单县江华机械有限公司| 北京 机械工程有限公司| 沈阳奎鑫钢铁有限公司| 汤阴升达机械有限公司| 慈溪市宏晟机械设备有限公司| 无锡胜麦机械有限公司| 山西中升钢铁有限公司| 青岛迪凯机械设备有限公司| 潍坊市通用机械有限公司| 招远华丰机械设备有限公司| 宁波天辉机械有限公司| 常州市雪龙机械制造有限公司| 固尔琦包装机械有限公司| 杭州岛文机械有限公司| 宁波佳尔灵气动机械有限公司| 台州市机械有限公司| 迎阳无纺机械有限公司| 扬州巨人机械有限公司| 上海创灵包装机械制造有限公司 | 秦皇岛国阳钢铁有限公司| 北仑旭升机械有限公司| 天津金都钢铁有限公司| 上海 起重设备有限公司| 深圳市鑫宏伟机械设备有限公司| 济南天方机械有限公司| 潍坊圣川机械有限公司| 吉林吉钢铁有限公司| 重庆 机械有限公司| 上海天驰制药机械有限公司| 大连亨益机械有限公司| 连云港兴鑫钢铁有限公司| 苏州包装机械有限公司| 宁波梦神床垫机械有限公司| 威海新元化工机械有限公司| 无锡科创机械设计制造有限公司 | 华亿机械制造有限公司| 广西五丰机械有限公司| 西安 机械设备有限公司| 中意机械苏州有限公司| 山西华强钢铁有限公司| 北京速深机械有限公司| 广东机械制造有限公司| 新乡市金原起重机械有限公司| 山东造纸机械厂有限公司| 湛江市机械有限公司| 浙江东雄重工有限公司| 上海奉业包装机械有限公司| 上海兴享机械工业有限公司| 山东天力液压机械有限公司| 江苏沃元精密机械有限公司| 上海行雄机械有限公司| 济南岳峰机械有限公司| 上海钢铁贸易有限公司| 台一精工机械有限公司| 上海嘉峥机械有限公司| 郑州市长城重工机械有限公司| 青岛大牧人机械有限公司| 佛山市南海鼎工包装机械有限公司 | 常州龙鹏机械有限公司| 上海机械工程有限公司| 宝德机械国际有限公司| 友隆精密机械有限公司| 江苏中饮机械有限公司| 山东豪迈机械制造有限公司| 浙江万通重工有限公司| 濮阳市机械有限公司| 广州日森机械有限公司| 唐山宝航机械有限公司| 东营恒诚机械有限公司| 晶元精密机械有限公司| 洛阳路通重工机械有限公司| 南京机械电子有限公司| 三星重工业宁波有限公司招聘| 山东平安工程机械有限公司| 扬州 机械有限公司| 输送机械设备有限公司| 江阴市液压机械有限公司| 环保设备机械有限公司| 江门振达机械有限公司| 合肥食品机械有限公司| 天津中核机械有限公司| 浙江赛力机械有限公司| 瑞安正博机械有限公司| 上海霏润机械设备有限公司 | 黎城太行钢铁有限公司| 山东天龙机械有限公司| 广东机械制造有限公司| 上海德采包装机械有限公司| 大庆惠博普石油机械设备制造有限公司| 苏州精创机械有限公司| 青岛金福鑫塑料机械有限公司| 立信染整机械深圳有限公司| 深圳市印刷机械有限公司| 杭州海陆重工有限公司| 广州市勤达机械设备有限公司| 郑州华隆机械制造有限公司| 洛阳泰红农业机械有限公司| 南京包装机械有限公司| 长沙中京机械有限公司| 溧阳市机械有限公司| 河南万泰机械有限公司| 浙江隆信机械制造有限公司| 山东讴神机械制造有限公司| 重庆捷灿机械有限公司| 广州日富机械有限公司| 星精密机械有限公司| 大连亨益机械有限公司| 山东山推工程机械结构件有限公司 | 济南迈动数控机械有限公司| 郑州一正重工机械有限公司| 重庆龙建机械有限公司| 苏州华致鑫精密机械有限公司| 江西鑫通机械制造有限公司| 新麦机械无锡有限公司| 上海信进精密机械有限公司| 长沙益广制药机械有限公司| 东莞市嘉鲁特注塑机械有限公司| 上海御流包装机械有限公司| 南通天成机械有限公司| 东泰盛机械有限公司| 上海冠龙阀门机械有限公司官网 | 新能源有限公司起名| 宁波北仑机械有限公司| 无锡械锐机械有限公司| 南昌欣向荣机械有限公司| 山东永峰钢铁有限公司| 长沙力诺机械有限公司| 万则盛机械有限公司| 广西 机械 有限公司| 嘉兴瑞宏精密机械有限公司| 浙江歌德起重机有限公司| 河北圣禹水工机械有限公司| 广州凯诺机械有限公司| 上海毅锴机械有限公司| 南京利晨机械有限公司| 中山精密机械有限公司| 广州市赛思达机械设备有限公司| 海宁诚达机械有限公司| 中设(苏州)机械设备工程有限公司 | 合肥市春晖机械制造有限公司 | 天津 机械设备有限公司| 河南良益机械有限公司| 邯郸包装机械有限公司| 青岛辉腾机械有限公司| 藏不起服饰有限公司| 张家口煤机械有限公司| 青岛威尔塑料机械有限公司| 同鼎机械设备有限公司| 东莞市数控机械有限公司| 常州市丰丰机械有限公司| 南京恒昌包装机械有限公司| 河南飞马起重机械有限公司| 科达机械制造有限公司| 机械设计 有限公司| 徐州迈特机械有限公司| 苏州勤堡精密机械有限公司| 南京润森工程机械有限公司| 益丰泰机械有限公司| 洛阳重工机械有限公司| 石家庄机械制造有限公司| 通达塑料机械有限公司| 青岛工程机械有限公司| 德州力维机械有限公司| 郑州包装机械有限公司| 石家庄煤矿机械有限公司| 青岛双星铸造机械有限公司| 青岛辉特重工有限公司| 河南云天起重机械有限公司| 唐山宝航机械有限公司| 宁波瑞基机械有限公司| 洛阳市机械有限公司| 天津精密机械有限公司| 石家庄机械有限公司| 江阴西城钢铁有限公司| 泉州市机械有限公司| 上海造及精密机械制造有限公司| 输送机械设备有限公司| 星精密机械有限公司| 锋机械设备有限公司| 昆山昆成机械有限公司| 浙江万宝机械有限公司| 武汉金火旺机械设备有限公司| 深圳市创世纪机械有限公司| 上海贯博起重设备有限公司| 杭州海特机械有限公司| 长沙旭众机械设备有限公司| 安庆佳乐机械有限公司| 远东机械设备有限公司| 丹东富田精工机械有限公司| 武汉餐至饮机械设备有限公司| 康铖机械设备有限公司| 江源机械制造有限公司| 山东钢铁日照钢铁有限公司| 源鸿机械制造有限公司| 抚顺机械设备制造有限公司| 嘉宝精密机械有限公司| 青岛 木工机械有限公司| 深圳数控机械有限公司| 徐州市机械有限公司| 扬州文轩钢铁有限公司| 西安亿起来贸易有限公司| 杭州东田机械有限公司| 上海成套机械有限公司| 山东德丰重工有限公司| 安来动力机械有限公司| 上海三久机械有限公司| 玉环机械制造有限公司| 福州 机械制造有限公司| 安钢闽源钢铁有限公司| 江阴市勤业化工机械有限公司 | 浙江双子机械制造有限公司| 合肥光裕机械有限公司| 高博起重设备有限公司| 山推抚起机械有限公司| 兖矿东华重工有限公司| 兴龙机械模具有限公司| 沃洲机械制造有限公司| 郑州昌利机械制造有限公司| 河南重型机械有限公司| 娄底 机械有限公司| 广州市科展机械设备有限公司| 深圳市创能机械有限公司| 浙江新立机械有限公司| 中航国际钢铁贸易有限公司| 诸城市机械有限公司| 山东华雄机械有限公司| 苏拉纺织机械有限公司| 上海熊猫机械有限公司| 湖北华伟石化机械设备制造有限公司| 济宁通佳机械有限公司| 江淮重工机械有限公司| 重庆渝辉机械有限公司| 佛山市机械制造有限公司| 苏州友众传动机械有限公司| 江苏柯恒石化电力机械有限公司 | 张家港市家源机械有限公司| 阳春市新钢铁有限公司| 江苏红日钢铁有限公司| 恩比尔(厦门)机械制造有限公司| 昆成机械(昆山)有限公司| 浙江亿森机械有限公司| 上海枫信传动机械有限公司| 无锡市川中五金机械有限公司 | 瑞特精密机械有限公司| 无锡鹰普机械有限公司| 申光洗涤机械有限公司| 唐山文丰钢铁有限公司| 潞城兴宝钢铁有限公司| 湖南一田农业机械有限公司| 机械生产制造有限公司| 常州杭钢卓信机械装备有限公司| 德蒙压缩机械有限公司| 河南省起重机械有限公司| 湖北 机械制造有限公司| 工程的机械设备有限公司| 湖南嘉龙机械设备贸易有限公司| 铁建重工包头有限公司| 广州市力净洗涤机械有限公司| 曼透平机械有限公司| 唐山九江钢铁有限公司| 湖北天腾重型机械制造有限公司| 营口京华钢铁有限公司| 柳州欧维姆机械有限公司| 宁波巨隆机械有限公司| 西安冠杰机械设备有限公司 | 山东机械设备有限公司怎么样| 有限公司 印刷机械| 上海佳成服装机械有限公司| 广东日钢机械有限公司| 嘉兴赛诺机械有限公司| 山东讴神机械制造有限公司| 中山伙伴自动化机械有限公司| 华威焊割机械有限公司| 河南万合机械有限公司| 大连孚德机械有限公司| 昆山北钜机械有限公司| 舞钢中加钢铁有限公司| 威海盛世机械有限公司| 金旺机械设备有限公司| 河南省浩业矿山机械有限公司| 河南点赞钢铁有限公司|